共计 21935 个字符,预计需要花费 55 分钟才能阅读完成。
提醒:本文最后更新于2023-05-27 19:07,文中所关联的信息可能已发生改变,请知悉!
0. 前言
0.1 用法
Lifecycle可以说是Jetpack中最基础的一个库,他的主要作用就是帮我们实现的生命周期监听。
对于他的用法也很简单,由于我们的Activity(间接通过ComponentActivity实现)、Fragment(直接实现)都已经实现了LifecycleOwner接口,所以我们可以直接在他们中调用getLifecycle()获得到Lifecycle对象,然后调用他的addObserver()将我们自定义的LifecycleObserver传入进入即可。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
class MainActivity : AppCompatActivity () { override fun onCreate (savedInstanceState: Bundle ?) { super .onCreate(savedInstanceState) setContentView(R.layout.activity_lifecycle_test) lifecycle.addObserver(LifecycleObserverTest) } } object LifecycleObserverTest : LifecycleObserver { private const val TAG = "LifecycleTest" @OnLifecycleEvent(Lifecycle.Event.ON_CREATE) fun prepare () { Log.d(TAG, "prepare: Create时播放器准备工作" ) } @OnLifecycleEvent(Lifecycle.Event.ON_DESTROY) fun release () { Log.d(TAG, "release: Destroy时释放资源" ) } fun play (context: Context ) { Log.d(TAG, "play" ) } }
这样当MainActivity执行onCreate()时会自动执行prepare()方法,执行onDestroy()时会自动执行release()方法,就不需要我们手动的去调用了。
但是这块需要注意的是,这些添加了生命周期的方法,一定不要传入任何参数,因为都已经是自动调用的了,也就我们手动干预不了,那么系统怎么知道你要传入的参数是谁呢。没有添加生命周期的方法不受影响。
另外一个注意的点是,我们调用addObserver()并不是一定得在onCreate()方法中调用,我们在任何地方任何生命周期时调用即可,比方说我们上面在onCreate()中调用了,这样打印出来的log就如下所示:
但是如果我们把addObserver()放在onResume()中调用,结果就变成了这样: 我们就会发现,原本应该在onCreate()时执行的方法却到了onResume()才执行。
所以这点我们一定要注意,我们调用addObserver()一定得在我们监听的生命周期里面或者之前。
0.2 真 · 前言
看完刚刚的用法,我们能得到的第一个要素就是Lifecycle一定是通过观察者模式实现的,这个从addObserver()就能看出来。
所以我们可以大胆猜想下Lifecycle的实现原理: 当调动addObserver()之后,Lifecycle就通过一种数据接口将这个LifecycleObserver的对象保存了起来,当Activity生命周期变化时,他就会遍历这个数据结构,然后调用每一个的对应的生命周期的回调代码。
对应的也就分为两部分:
注册
分发
执行回调
(PS:突然感觉好像EventBus😂)
接下来我们就可以开始看源码,来验证我们的猜想到底正不正确。
1. 注册
注册肯定是从getLifecycle().addObserver(LifecycleObserver observer)开始嘛。
首先,getLifecycle()是谁的方法?
直接通过AndroidStudio的跳转功能就能看到,我们调用的getLifecycle()其实是ComponentActivity的一个方法,进一步跳转就能看到其实是LifecycleOwner这个接口的一个抽象方法。
所以也就是说,Activity继承自ComponentActivity,而ComponentActivity实现了LifecycleOwner接口,这个接口中只有一个方法,那就是getLifecycle()。(Fragment同理)
而这个方法返回的是Lifecycle,那么Lifecycle里面有些啥东西?
1.1 Lifecycle抽象类
进入Lifecycle的源码就能看到它是一个抽象类,代码也很少:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
public abstract class Lifecycle { AtomicReference<Object> mInternalScopeRef = new AtomicReference <>(); @MainThread public abstract void addObserver (@NonNull LifecycleObserver observer) ; @MainThread public abstract void removeObserver (@NonNull LifecycleObserver observer) ; @MainThread public abstract State getCurrentState () ; @SuppressWarnings("WeakerAccess") public enum Event { ON_CREATE, ON_START, ON_RESUME, ON_PAUSE, ON_STOP, ON_DESTROY, ON_ANY } public enum State { DESTROYED, INITIALIZED, CREATED, STARTED, RESUMED; public boolean isAtLeast (@NonNull State state) { return compareTo(state) >= 0 ; } } }
Lifecycle中有三个方法和两个枚举:
三个方法
addObserver():Adds a LifecycleObserver that will be notified when the LifecycleOwner changes. (添加一个LifecycleObserver,这个LifecycleObserver在LifecycleOwner变化时能得到通知)
removeObserver():Removes the given observer from the observers list. (从observers的集合中移除这个observer)
getCurrentState():Returns the current state of the Lifecycle. (返回当前的生命周期状态(State))
两个枚举
Event:这个不用多说,对应着Activity、Fragment的基本生命周期
State:这个是返回的当前Activity、Fragment的状态,具体转换看下图:
从上可得知,Lifecycle这个抽象类主要的作用就是
添加和移除Observer
获取当前LifecycleOwner的状态,并负责对应的状态和事件的转换
那么我们回过头来,getLifecycle()要求返回一个Lifecycle对象,但是Lifecycle是一个抽象类,没办法直接构造对象,那么这个方法返回的是谁? 我们直接看ComponentActivity的getLifecycle()方法:
1 2 3
public Lifecycle getLifecycle () { return mLifecycleRegistry; }
而这个mLifecycleRegistry是LifecycleRegistry的对象,所以可以得知,Lifecycle其中一个(实际上是唯一)实现类是LifecycleRegistry。
1.2 LifecycleRegistry
Lifecycle只有唯一一个实现类,那就是LifecycleRegistry。
刚刚说到,注册肯定是有一个Observer的集合,刚刚Lifecycle源码中的注释也说明了这一点,所以我们先从这个类的属性开始看起:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
public class LifecycleRegistry extends Lifecycle { private FastSafeIterableMap<LifecycleObserver, ObserverWithState> mObserverMap = new FastSafeIterableMap <>(); private State mState; private final WeakReference<LifecycleOwner> mLifecycleOwner; private int mAddingObserverCounter = 0 ; private boolean mHandlingEvent = false ; private boolean mNewEventOccurred = false ; }
mObserverMap:用于保存Observer的集合,是一个FastSafeIterableMap集合,而这个FastSafeIterableMap根据源码注释,是类似于LinkedHashMap的,并且它是线程不安全,允许使用迭代器时修改集合的。
mState:当前的状态(State)。就是Lifecycle中的那个State枚举类。
mLifecycleOwner:就是这个LifecycleRegistry的持有者,这块使用了弱引用,是为了避免对Fragment、Activity直接引用而造成内存泄漏。
mAddingObserverCounter:正在添加到mObserverMap中的Observer的数量。
mHandlingEvent:是否正在分发事件的标记。
mNewEventOccurred:是否有新的事件发生的标记。
接着就来分析addObserver方法:
1.2.1 addObserver(@NonNull LifecycleObserver observer)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
@Override public void addObserver (@NonNull LifecycleObserver observer) { State initialState = mState == DESTROYED ? DESTROYED : INITIALIZED; ObserverWithState statefulObserver = new ObserverWithState (observer, initialState); ObserverWithState previous = mObserverMap.putIfAbsent(observer, statefulObserver); if (previous != null ) { return ; } LifecycleOwner lifecycleOwner = mLifecycleOwner.get(); if (lifecycleOwner == null ) { return ; } boolean isReentrance = mAddingObserverCounter != 0 || mHandlingEvent; State targetState = calculateTargetState(observer); mAddingObserverCounter++; while ((statefulObserver.mState.compareTo(targetState) < 0 && mObserverMap.contains(observer))) { pushParentState(statefulObserver.mState); statefulObserver.dispatchEvent(lifecycleOwner, upEvent(statefulObserver.mState)); popParentState(); targetState = calculateTargetState(observer); } if (!isReentrance) { sync(); } mAddingObserverCounter--; }
所以这个方法主要执行了下面几件事
先构造一个默认状态,要么是DESTROYED要么是INITIALIZED
然后根据这个observer和这个状态构建出一个statefulObserver
就去计算targetState,并对于这个statefulObserver,如果他的state小于targetState,就进行分发时间,并重新计算targetState
如果是不可重入状态,则执行sync()方法
1.2.2 calculateTargetState(LifecycleObserver observer)
1 2 3 4 5 6 7 8 9 10 11 12
private State calculateTargetState (LifecycleObserver observer) { Entry<LifecycleObserver, ObserverWithState> previous = mObserverMap.ceil(observer); State siblingState = previous != null ? previous.getValue().mState : null ; State parentState = !mParentStates.isEmpty() ? mParentStates.get(mParentStates.size() - 1 ) : null ; return min(min(mState, siblingState), parentState); }
所以这个方法的主要作用就是计算targetState,这个targetState一定小于等于当前mState。 也就是说,我们可以添加多个Observer,但是每次添加新的Observer的时候,初始状态都是INITIALIZED,这个时候就需要把它同步到当前的生命周期状态。
并且在更新状态的时候,每次更新之后都会调用这个方法再重新计算targetState。
上面就完成了事件的添加了,那我们现在再来看下它是怎么分发事件的。
2. 分发
我们再次回到ComponentActivity,他在onCreate()方法中执行了一行代码:
1 2 3 4 5 6 7 8 9
@Override protected void onCreate (@Nullable Bundle savedInstanceState) { super .onCreate(savedInstanceState); mSavedStateRegistryController.performRestore(savedInstanceState); ReportFragment.injectIfNeededIn(this ); if (mContentLayoutId != 0 ) { setContentView(mContentLayoutId); } }
那我们看一下这个ReportFragment到底是啥:
2.1 ReportFragment
2.1.1 ReportFragment # injectIfNeededIn()
1 2 3 4 5 6 7 8 9 10 11 12
public static void injectIfNeededIn (Activity activity) { android.app.FragmentManager manager = activity.getFragmentManager(); if (manager.findFragmentByTag(REPORT_FRAGMENT_TAG) == null ) { manager.beginTransaction().add(new ReportFragment (), REPORT_FRAGMENT_TAG).commit(); manager.executePendingTransactions(); } }
看到这块是不是感觉很眼熟,Android中最常用的监听生命周期的方法就是往Activity中添加一个没有界面的Fragment,这块正是这个操作,所以我们具体看一下ReportFragment的实现。
2.1.2 ReportFragment # 生命周期监听
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
@Override public void onActivityCreated (Bundle savedInstanceState) { super .onActivityCreated(savedInstanceState); dispatchCreate(mProcessListener); dispatch(Lifecycle.Event.ON_CREATE); } @Override public void onStart () { super .onStart(); dispatchStart(mProcessListener); dispatch(Lifecycle.Event.ON_START); } @Override public void onResume () { super .onResume(); dispatchResume(mProcessListener); dispatch(Lifecycle.Event.ON_RESUME); } @Override public void onPause () { super .onPause(); dispatch(Lifecycle.Event.ON_PAUSE); } @Override public void onStop () { super .onStop(); dispatch(Lifecycle.Event.ON_STOP); } @Override public void onDestroy () { super .onDestroy(); dispatch(Lifecycle.Event.ON_DESTROY); mProcessListener = null ; }
这是ReportFragment中对生命周期监听的所有方法,我们可以看到这些方法都有两个共性:
他们都调用了dispatch()方法去分发生命周期
他们都通知了mProcessListener
对于mProcessListener,这个是处理应用程序进程的生命周期的,这个我们先不去管它,我们需要重视的是这个dispatch()方法
2.1.3 ReportFragment # dispatch()
1 2 3 4 5 6 7 8 9 10 11 12 13 14
private void dispatch (Lifecycle.Event event) { Activity activity = getActivity(); if (activity instanceof LifecycleRegistryOwner) { ((LifecycleRegistryOwner) activity).getLifecycle().handleLifecycleEvent(event); return ; } if (activity instanceof LifecycleOwner) { Lifecycle lifecycle = ((LifecycleOwner) activity).getLifecycle(); if (lifecycle instanceof LifecycleRegistry) { ((LifecycleRegistry) lifecycle).handleLifecycleEvent(event); } } }
由于我们探究的是ComponentActivity,所以肯定是走的第8行的if,然后他就会通过getLifecycle()拿到mLifecycleRegistry,然后调用了他的handleLifecycleEvent(event)
2.2 LifecycleRegistry
2.2.1 LifecycleRegistry # handleLifecycleEvent()
1 2 3 4
public void handleLifecycleEvent (@NonNull Lifecycle.Event event) { State next = getStateAfter(event); moveToState(next); }
他首先调用了getSateAfter()方法,获取到了当前event对应的State(这个对应关系见上面那个State和Event的对应关系图)。 然后调用moveToSate()去分发事件以及移动状态。
2.2.2 LifecycleRegistry # getStateAfter()
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
static State getStateAfter (Event event) { switch (event) { case ON_CREATE: case ON_STOP: return CREATED; case ON_START: case ON_PAUSE: return STARTED; case ON_RESUME: return RESUMED; case ON_DESTROY: return DESTROYED; case ON_ANY: break ; } throw new IllegalArgumentException ("Unexpected event value " + event); }
这个也就是我们上面说的Event和State对照图的来源。
2.2.3 LifecycleRegistry # moveToState()
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
private void moveToState (State next) { if (mState == next) { return ; } mState = next; if (mHandlingEvent || mAddingObserverCounter != 0 ) { mNewEventOccurred = true ; return ; } mHandlingEvent = true ; sync(); mHandlingEvent = false ; }
这个方法就是将next同步到mState,并进行对应的状态的分发。
2.2.4 LifecycleRegistry # sync()
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
private void sync () { LifecycleOwner lifecycleOwner = mLifecycleOwner.get(); if (lifecycleOwner == null ) { throw new IllegalStateException ("LifecycleOwner of this LifecycleRegistry is already" + "garbage collected. It is too late to change lifecycle state." ); } while (!isSynced()) { mNewEventOccurred = false ; if (mState.compareTo(mObserverMap.eldest().getValue().mState) < 0 ) { backwardPass(lifecycleOwner); } Entry<LifecycleObserver, ObserverWithState> newest = mObserverMap.newest(); if (!mNewEventOccurred && newest != null && mState.compareTo(newest.getValue().mState) > 0 ) { forwardPass(lifecycleOwner); } } mNewEventOccurred = false ; }
由于这是mState已经更新,但是Observers的状态还没更新过,所以肯定是进入第23行的if,也就执行forwardPass()方法
2.2.5 LifecycleRegistry # forwardPass()
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
private void forwardPass (LifecycleOwner lifecycleOwner) { Iterator<Entry<LifecycleObserver, ObserverWithState>> ascendingIterator = mObserverMap.iteratorWithAdditions(); while (ascendingIterator.hasNext() && !mNewEventOccurred) { Entry<LifecycleObserver, ObserverWithState> entry = ascendingIterator.next(); ObserverWithState observer = entry.getValue(); while ((observer.mState.compareTo(mState) < 0 && !mNewEventOccurred && mObserverMap.contains(entry.getKey()))) { pushParentState(observer.mState); observer.dispatchEvent(lifecycleOwner, upEvent(observer.mState)); popParentState(); } } } private static Event upEvent (State state) { switch (state) { case INITIALIZED: case DESTROYED: return ON_CREATE; case CREATED: return ON_START; case STARTED: return ON_RESUME; case RESUMED: throw new IllegalArgumentException (); } throw new IllegalArgumentException ("Unexpected state value " + state); }
到这块我们就差不多能理解他的一个流程了,假设我们上面的流程是从ON_CREATE到ON_RESUME,那么这个流程就是:
ReportFragment通过监听生命周期变化,调用了dispatch(Lifecycle.Event.ON_RESUME);
在dispatch()中则执行了LifecycleRegistry的handleLifecycleEvent()方法,参数是ON_RESUME;
通过getStateAfter()返回RESUMED,在调用moveToState()跳转到RESUMED;
这时将mSate更新为RESUMED,然后调用sync()方法
在sync()方法中,由于mSate是RESUMED状态,而mObserverMap中的状态都是STARTED,那么mState大于mObserverMap,就执行forwardPass()方法
最后就会调用observer.dispatchEvent()去分发事件
2.2.6 LifecycleRegistry # backwardPass()
刚刚看完了上面的代码和流程,那么既然有forwardPass(),对应的backwardPass()有啥作用呢?
我们还是假设一下流程,我们刚刚说到了ON_RESUME,那么我们假设从ON_RESUME到ON_PAUSE,再来看一下刚刚的流程,和刚刚的流程一样的:
ReportFragment通过监听生命周期变化,调用了dispatch(Lifecycle.Event.ON_PAUSE);
在dispatch()中则执行了LifecycleRegistry的handleLifecycleEvent()方法,参数是ON_PAUSE;
通过getStateAfter()返回STARTED,在调用moveToState()跳转到STARTED;
这时将mSate更新为STARTED,然后调用sync()方法
在sync()方法中,由于mSate是STARTED状态,而mObserverMap中的状态都是RESUMED,那么mState小于mObserverMap,就执行backwardPass()方法
最后就会调用observer.dispatchEvent()去分发事件
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
private void backwardPass (LifecycleOwner lifecycleOwner) { Iterator<Entry<LifecycleObserver, ObserverWithState>> descendingIterator = mObserverMap.descendingIterator(); while (descendingIterator.hasNext() && !mNewEventOccurred) { Entry<LifecycleObserver, ObserverWithState> entry = descendingIterator.next(); ObserverWithState observer = entry.getValue(); while ((observer.mState.compareTo(mState) > 0 && !mNewEventOccurred && mObserverMap.contains(entry.getKey()))) { Event event = downEvent(observer.mState); pushParentState(getStateAfter(event)); observer.dispatchEvent(lifecycleOwner, event); popParentState(); } } } private static Event downEvent (State state) { switch (state) { case INITIALIZED: throw new IllegalArgumentException (); case CREATED: return ON_DESTROY; case STARTED: return ON_STOP; case RESUMED: return ON_PAUSE; case DESTROYED: throw new IllegalArgumentException (); } throw new IllegalArgumentException ("Unexpected state value " + state); }
上面就是事件分发的过程。
那么剩下最后一个问题,怎么执行回调方法?
3. 执行回调
其实这块我们刚刚已经提到过了,那就是在sync()方法中会调用forwardPass()和backwardPass()方法,这两个方法中都会调用observer.dispatchEvent(lifecycleOwner, event)方法,所以我们就从这个入手。
首先我们回顾下,我们添加进去的observer到底是谁? 回到addObserver()方法,在这个方法内部的第二行和第三行:
1 2
ObserverWithState statefulObserver = new ObserverWithState (observer, initialState);ObserverWithState previous = mObserverMap.putIfAbsent(observer, statefulObserver);
可以看到我们取出来的observer其实就是这块的这个statefulObserver,他是调用了ObserverWithState的构造方法构造出来的,并且我们后面也是调用的他的dispatchEvent()方法,那我们就直接来看一下这个类:
3.1 ObserverWithState
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
static class ObserverWithState { State mState; LifecycleEventObserver mLifecycleObserver; ObserverWithState(LifecycleObserver observer, State initialState) { mLifecycleObserver = Lifecycling.lifecycleEventObserver(observer); mState = initialState; } void dispatchEvent (LifecycleOwner owner, Event event) { State newState = getStateAfter(event); mState = min(mState, newState); mLifecycleObserver.onStateChanged(owner, event); mState = newState; } }
通过这个源码可以看到,它里面有两个参数,一个是mSate,这个就是这个Observer当前的状态,另一个就是mLifecycleObserver,这个也就是我们传入的Observer,但是他并不是直接拿着我们传入的observer使用,而是调用Lifecycling.lifecycleEventObserver()返回了一个值,那我们看一下这个方法到底是啥:
3.1.1 Lifecycling
3.1.1.1 Lifecycling # lifecycleEventObserver()
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
@NonNull static LifecycleEventObserver lifecycleEventObserver (Object object) { boolean isLifecycleEventObserver = object instanceof LifecycleEventObserver; boolean isFullLifecycleObserver = object instanceof FullLifecycleObserver; if (isLifecycleEventObserver && isFullLifecycleObserver) { return new FullLifecycleObserverAdapter ((FullLifecycleObserver) object, (LifecycleEventObserver) object); } if (isFullLifecycleObserver) { return new FullLifecycleObserverAdapter ((FullLifecycleObserver) object, null ); } if (isLifecycleEventObserver) { return (LifecycleEventObserver) object; } final Class<?> klass = object.getClass(); int type = getObserverConstructorType(klass); if (type == GENERATED_CALLBACK) { List<Constructor<? extends GeneratedAdapter >> constructors = sClassToAdapters.get(klass); if (constructors.size() == 1 ) { GeneratedAdapter generatedAdapter = createGeneratedAdapter( constructors.get(0 ), object); return new SingleGeneratedAdapterObserver (generatedAdapter); } GeneratedAdapter[] adapters = new GeneratedAdapter [constructors.size()]; for (int i = 0 ; i < constructors.size(); i++) { adapters[i] = createGeneratedAdapter(constructors.get(i), object); } return new CompositeGeneratedAdaptersObserver (adapters); } return new ReflectiveGenericLifecycleObserver (object); } private static int getObserverConstructorType (Class<?> klass) { Integer callbackCache = sCallbackCache.get(klass); if (callbackCache != null ) { return callbackCache; } int type = resolveObserverCallbackType(klass); sCallbackCache.put(klass, type); return type; } private static int resolveObserverCallbackType (Class<?> klass) { if (klass.getCanonicalName() == null ) { return REFLECTIVE_CALLBACK; } Constructor<? extends GeneratedAdapter > constructor = generatedConstructor(klass); if (constructor != null ) { sClassToAdapters.put(klass, Collections .<Constructor<? extends GeneratedAdapter >>singletonList(constructor)); return GENERATED_CALLBACK; } boolean hasLifecycleMethods = ClassesInfoCache.sInstance.hasLifecycleMethods(klass); if (hasLifecycleMethods) { return REFLECTIVE_CALLBACK; } Class<?> superclass = klass.getSuperclass(); List<Constructor<? extends GeneratedAdapter >> adapterConstructors = null ; if (isLifecycleParent(superclass)) { if (getObserverConstructorType(superclass) == REFLECTIVE_CALLBACK) { return REFLECTIVE_CALLBACK; } adapterConstructors = new ArrayList <>(sClassToAdapters.get(superclass)); } for (Class<?> intrface : klass.getInterfaces()) { if (!isLifecycleParent(intrface)) { continue ; } if (getObserverConstructorType(intrface) == REFLECTIVE_CALLBACK) { return REFLECTIVE_CALLBACK; } if (adapterConstructors == null ) { adapterConstructors = new ArrayList <>(); } adapterConstructors.addAll(sClassToAdapters.get(intrface)); } if (adapterConstructors != null ) { sClassToAdapters.put(klass, adapterConstructors); return GENERATED_CALLBACK; } return REFLECTIVE_CALLBACK; }
其中我们需要注意的是hasLifecycleMethods:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
boolean hasLifecycleMethods (Class klass) { Boolean hasLifecycleMethods = mHasLifecycleMethods.get(klass); if (hasLifecycleMethods != null ) { return hasLifecycleMethods; } Method[] methods = getDeclaredMethods(klass); for (Method method : methods) { OnLifecycleEvent annotation = method.getAnnotation(OnLifecycleEvent.class); if (annotation != null ) { createInfo(klass, methods); return true ; } } mHasLifecycleMethods.put(klass, false ); return false ; }
这个代码就没啥好说的,单纯通过反射去找OnLifecycleEvent注解,所以综上所述,我们通过OnLifecycleEvent注解实现的Observer则返回的是REFLECTIVE_CALLBACK类型,对应的lifecycleEventObserver()方法返回的也是new ReflectiveGenericLifecycleObserver(observer)。
3.1.2 ReflectiveGenericLifecycleObserver
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
class ReflectiveGenericLifecycleObserver implements LifecycleEventObserver { private final Object mWrapped; private final CallbackInfo mInfo; ReflectiveGenericLifecycleObserver(Object wrapped) { mWrapped = wrapped; mInfo = ClassesInfoCache.sInstance.getInfo(mWrapped.getClass()); } @Override public void onStateChanged (LifecycleOwner source, Event event) { mInfo.invokeCallbacks(source, event, mWrapped); } }
而我们之前的observer.dispatchEvent()方法中实际上调用的是mLifecycleObserver.onStateChanged(owner, event),所以最后会交给ReflectiveGenericLifecycleObserver的onStateChanged()方法来执行,而这个方法中又调用了mInfo.invokeCallbacks():
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
void invokeCallbacks (LifecycleOwner source, Lifecycle.Event event, Object target) { invokeMethodsForEvent(mEventToHandlers.get(event), source, event, target); invokeMethodsForEvent(mEventToHandlers.get(Lifecycle.Event.ON_ANY), source, event, target); } private static void invokeMethodsForEvent (List<MethodReference> handlers, LifecycleOwner source, Lifecycle.Event event, Object mWrapped) { if (handlers != null ) { for (int i = handlers.size() - 1 ; i >= 0 ; i--) { handlers.get(i).invokeCallback(source, event, mWrapped); } } } void invokeCallback (LifecycleOwner source, Lifecycle.Event event, Object target) { try { switch (mCallType) { case CALL_TYPE_NO_ARG: mMethod.invoke(target); break ; case CALL_TYPE_PROVIDER: mMethod.invoke(target, source); break ; case CALL_TYPE_PROVIDER_WITH_EVENT: mMethod.invoke(target, source, event); break ; } } catch (InvocationTargetException e) { throw new RuntimeException ("Failed to call observer method" , e.getCause()); } catch (IllegalAccessException e) { throw new RuntimeException (e); } }
这个代码就很简单了,就是利用反射去执行。